Fat-footed tyrannosaur parents could not keep up with their skinnier adolescent offspring – Taylor & Francis Newsroom

New research by the University of New England’s Palaeoscience Research Centre suggests juvenile tyrannosaurs were slenderer and relatively faster for their body size compared to their multi-tonne parents. The research, published in the Journal of Vertebrate Paleontology, analysed a collection


Breaking research

Fat-footed tyrannosaur parents could not keep up with their skinnier adolescent offspring


Artistic reconstruction of a tyrannosaur creating footprints. Image courtesy of José Vitor Silva

New research by the University of New England’s Palaeoscience Research Centre suggests juvenile tyrannosaurs were slenderer and relatively faster for their body size compared to their multi-tonne parents.

The research, published in the


Journal of Vertebrate Paleontology,


analysed a collection of fossilised tyrannosaur footprints to learn more about the way these animals aged and how they moved.

UNE PhD student and study leader, Nathan Enriquez — in international collaboration with the Philip J. Currie Dinosaur Museum, University of Alberta, Royal Ontario Museum, University of Bologna and the Grande Prairie Regional College — believes the findings contribute a new line of evidence to previous findings based on bone anatomy and computer models of muscle masses.

“The results suggest that as some tyrannosaurs grew older and heavier, their feet also became comparably more bulky,” Mr Enriquez said.

“Fully grown tyrannosaurs were believed to be more robust than younger individuals based on their relatively shorter hind limbs and more massive skulls, but nobody had explored this growth pattern using fossil footprints, which are unique in that they can provide a snapshot of the feet as they appeared in life, with outlines of the soft, fleshy parts of the foot that are rarely preserved as fossils.

“If relative bulk increased as tyrannosaurs grew, and their ability to run decreased, we would expect to see differences in the shape of footprints made by older and younger animals.”

Footprints can be ambiguous and hard to interpret correctly — the shape of a footprint may be influenced by the type of ground surface that is stepped on and the motions of the animal making the footprints. In addition, the exact identity of the animal may not always be clear. These challenges have previously limited the use of fossil footprints in understanding dinosaur growth.

The answer lay in the Grande Prairie region of Northern Alberta, Canada, where the research team worked with well-preserved samples of footprints of different sizes that are suggested to belong to the same type of animal.

“We explored a remote dinosaur footprint site where we discovered a new set of large carnivorous dinosaur footprints within very similar rocks to those which have produced tyrannosaur tracks in the past,” Mr Enriquez said.

“Based on the relatively close proximity between these discoveries and their nearly equivalent ages — about 72.5 million years old — we suggest they may indeed belong to the same species.

“We were also careful to assess the quality of preservation in each footprint, and only considered specimens which were likely to reflect the shape of the actual feet that produced them.”

Once the team had a suitable sample, they analysed the outlines of each specimen using a method called geometric morphometrics. This process removes the effect of overall size differences between each footprint and shows what the most important differences in track shape are.

“The greatest difference in shape was found to be the relative width and surface area of the heel impression, which significantly increased in size between smaller and larger footprints,” Mr Enriquez said.

“The smaller tracks are comparably slender, while the biggest tyrannosaur tracks are relatively broader and had much larger heel areas. This makes sense for an animal that is becoming larger and needs to support its rapidly increasing body weight. It also suggests the relative speed of these animals decreased with age.

“Increasingly bulky feet in the adults aligns with previous suggestions that juvenile tyrannosaurs would have been faster and more agile for their body size in comparison to their parents, and means that we can add footprints as another line of evidence in the debate over tyrannosaur growth.

“Lastly, it demonstrates the usefulness of footprints for investigating a potentially wider range of ideas about the lives of extinct species than has been considered previously.”

Source URL: Read More
The public content above was dynamically discovered – by graded relevancy to this site’s keyword domain name. Such discovery was by systematic attempts to filter for “Creative Commons“ re-use licensing and/or by Press Release distributions. “Source URL” states the content’s owner and/or publisher. When possible, this site references the content above to generate its value-add, the dynamic sentimental analysis below, which allows us to research global sentiments across a multitude of topics related to this site’s specific keyword domain name. Additionally, when possible, this site references the content above to provide on-demand (multilingual) translations and/or to power its “Read Article to Me” feature, which reads the content aloud to visitors. Where applicable, this site also auto-generates a “References” section, which appends the content above by listing all mentioned links. Views expressed in the content above are solely those of the author(s). We do not endorse, offer to sell, promote, recommend, or, otherwise, make any statement about the content above. We reference the content above for your “reading” entertainment purposes only. Review “DMCA & Terms”, at the bottom of this site, for terms of your access and use as well as for applicable DMCA take-down request.

Acquire this Domain
You can acquire this site’s domain name! We have nurtured its online marketing value by systematically curating this site by the domain’s relevant keywords. Explore our content network – you can advertise on each or rent vs. buy the domain. [email protected] | Skype: TLDtraders | +1 (475) BUY-NAME (289 – 6263). Thousands search by this site’s exact keyword domain name! Most are sent here because search engines often love the keyword. This domain can be your 24/7 lead generator! If you own it, you could capture a large amount of online traffic for your niche. Stop wasting money on ads. Instead, buy this domain to gain a long-term marketing asset. If you can’t afford to buy then you can rent the domain.

About Us
We are Internet Investors, Developers, and Incubators- operating a content network of several thousand sites while federating 20+ eCommerce and SaaS startups. With our proprietary “inverted incubation” model, we leverage a portfolio of $15M+ in valued domains to impact online trends, traffic, and transactions. We use robotic process automation, machine learning, and other proprietary approaches to power our content network. Discover our work!

Share